Products of Vitamin D3 or 7-Dehydrocholesterol Metabolism by Cytochrome P450scc Show Anti-Leukemia Effects, Having Low or Absent Calcemic Activity

نویسندگان

  • Andrzej T. Slominski
  • Zorica Janjetovic
  • Brian E. Fuller
  • Michal A. Zmijewski
  • Robert C. Tuckey
  • Minh N. Nguyen
  • Trevor Sweatman
  • Wei Li
  • Jordan Zjawiony
  • Duane Miller
  • Tai C. Chen
  • Gerard Lozanski
  • Michael F. Holick
چکیده

BACKGROUND Cytochrome P450scc metabolizes vitamin D3 to 20-hydroxyvitamin D3 (20(OH)D3) and 20,23(OH)(2)D3, as well as 1-hydroxyvitamin D3 to 1alpha,20-dihydroxyvitamin D3 (1,20(OH)(2)D3). It also cleaves the side chain of 7-dehydrocholesterol producing 7-dehydropregnenolone (7DHP), which can be transformed to 20(OH)7DHP. UVB induces transformation of the steroidal 5,7-dienes to pregnacalciferol (pD) and a lumisterol-like compounds (pL). METHODS AND FINDINGS To define the biological significance of these P450scc-initiated pathways, we tested the effects of their 5,7-diene precursors and secosteroidal products on leukemia cell differentiation and proliferation in comparison to 1alpha,25-dihydroxyvitamin D3 (1,25(OH)(2)D3). These secosteroids inhibited proliferation and induced erythroid differentiation of K562 human chronic myeloid and MEL mouse leukemia cells with 20(OH)D3 and 20,23(OH)(2)D3 being either equipotent or slightly less potent than 1,25(OH)(2)D3, while 1,20(OH)(2)D3, pD and pL compounds were slightly or moderately less potent. The compounds also inhibited proliferation and induced monocytic differentiation of HL-60 promyelocytic and U937 promonocytic human leukemia cells. Among them 1,25(OH)(2)D3 was the most potent, 20(OH)D3, 20,23(OH)(2)D3 and 1,20(OH)(2)D3 were less active, and pD and pL compounds were the least potent. Since it had been previously proven that secosteroids without the side chain (pD) have no effect on systemic calcium levels we performed additional testing in rats and found that 20(OH)D3 had no calcemic activity at concentration as high as 1 microg/kg, whereas, 1,20(OH)(2)D3 was slightly to moderately calcemic and 1,25(OH)(2)D3 had strong calcemic activity. CONCLUSIONS We identified novel secosteroids that are excellent candidates for anti-leukemia therapy with 20(OH)D3 deserving special attention because of its relatively high potency and lack of calcemic activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A pathway for the metabolism of vitamin D3: unique hydroxylated metabolites formed during catalysis with cytochrome P450scc (CYP11A1).

Metabolites of vitamin D3 (D3) (cholecalciferol) are recognized as enzymatically formed chemicals in humans that can influence a wide variety of reactions that regulate a large number of cellular functions. The metabolism of D3 has been extensively studied, and a role for three different mitochondrial cytochrome P450s (CYP24A, CYP27A, and CYP27B1) has been described that catalyze the formation ...

متن کامل

Sequential Metabolism of 7-Dehydrocholesterol to Steroidal 5,7-Dienes in Adrenal Glands and Its Biological Implication in the Skin

Since P450scc transforms 7-dehydrocholesterol (7DHC) to 7-dehydropregnenolone (7DHP) in vitro, we investigated sequential 7DHC metabolism by adrenal glands ex vivo. There was a rapid, time- and dose-dependent metabolism of 7DHC by adrenals from rats, pigs, rabbits and dogs with production of more polar 5,7-dienes as detected by RP-HPLC. Based on retention time (RT), UV spectra and mass spectrom...

متن کامل

Human cytochrome P450scc (CYP11A1) catalyzes epoxide formation with ergosterol.

Cytochrome P450scc (P450scc) catalyzes the cleavage of the side chain of both cholesterol and the vitamin D(3) precursor, 7-dehydrocholesterol. The aim of this study was to test the ability of human P450scc to metabolize ergosterol, the vitamin D(2) precursor, and define the structure of the major products. P450scc incorporated into the bilayer of phospholipid vesicles converted ergosterol to t...

متن کامل

20-Hydroxyvitamin D3, a product of vitamin D3 hydroxylation by cytochrome P450scc, stimulates keratinocyte differentiation.

It has been shown that mammalian cytochrome P450scc can metabolize vitamin D3 to 20-hydroxyvitamin D3 (20(OH)D3) and 20,22(OH)2D3. To define the biological significance of this pathway, we tested the effects of 20(OH)D3 on the differentiation program of keratinocytes and on the expression of enzymes engaged in vitamin D3 metabolism. Immortalized HaCaT and adult human epidermal keratinocytes wer...

متن کامل

Inhibition of poly(adenosine diphosphate-ribose) polymerase by the active form of vitamin D.

Vitamin D is well characterized for its role in mineral homeostasis and maintenance of normal skeletal architecture. Vitamin D has been demonstrated to exert anti-inflammatory effects in a variety of disease states including diabetes, arthritis and inflammatory bowel disease. In these diseases poly[adenosine diphosphate (ADP)-ribose] polymerase (PARP) inhibitors have also proved effective as an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2010